Introduction to Smooth Manifolds – Chapter 4

Daniel McNeela

May 22, 2023

1 Exercises

Exercise 4.3

(a)

Proof. Let $M = M_1 \times \cdots \times M_k$ and $\dim(M_i) = n_i$. To prove that π_i is a submersion, we need to show that $\operatorname{rank}(d\pi_i)_p = n_i$ for all $p \in M$. We have that $\pi_i : M_1 \times \cdots \times M_k \to M_i$ is the projection function defined by

 $\pi_i(p_1,\ldots,p_k)=p_i$

It was previously proven that π_i is smooth. Furthermore, by definition, we can write

 $\iota \circ \pi_i = \mathrm{Id}_M \big|_{M_i}$

So we have

$$d\iota \circ d\pi_i = d(\mathrm{Id}_M\big|_{M_*})$$

By Prop. 3.6, $d(\mathrm{Id}_M|_{M_i})_p = \mathrm{Id}_{T_{p_i}M_i}$, so $\mathrm{rank}(d(\mathrm{Id}_M|_{M_i})_p) = n_i$. Additionally,

 M_i is an open submanifold of $\iota(M_i)$. Thus, by Prop. 3.9, $d\iota_{p_i}$ is an isomorphism, $d\iota_{p_i} : T_{p_i}M_i \to T_{\iota(p_i)}M$, so $\operatorname{rank}(d\iota_{p_i}) = n_i$. By the properties of a composition of linear maps, $\operatorname{rank}((d\pi_i)_p) = n_i$. Since p was arbitrary, this holds for all $p \in M$, so π_i is a smooth submersion.

Exercise 4.4

Proof. This is a natural consequence of composition of linear maps. Let $f: M \to N$ and $g: N \to P$ be smooth submersions. Consider, $d(g \circ f)_p = dg_{f(p)} \circ df_p$ for any $p \in M$. Then $\operatorname{rank}(df_p) = \dim(N)$ and $\operatorname{rank}(dg_{f(p)}) = \dim(P)$, so we can view $dg_{f(p)} \circ df_p$ as a multiplication of Jacobian matrices (with respect to some choice of coordinate charts) of full rank, and thus $\operatorname{rank}(d(g \circ f)_p) = \dim(P)$, so $g \circ f$ is a smooth submersion.

The same goes for immersions. If f and g are immersions, then $\dim(\ker(df_p)) =$

0 and dim $(\ker(dg_{f(p)})) = 0$, so by composition of linear maps, dim $(\ker(d(g \circ f)_p)) = 0$, so $g \circ f$ is a smooth immersion.

Now, we need to devise a counterexample to show that a composition of maps of constant rank need not have constant rank. Define $f : \mathbb{R} \to \mathbb{R}^2 : t \mapsto (t, t^2)$ and $g : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto y$. Then f and g both have constant rank 1, but $g \circ f$ has rank 1 at $t \neq 0$ but rank 0 at t = 0. Credit for this part goes to: Georges Elencwajg

Exercise 4.16

Show that every composition of smooth embeddings is a smooth embedding.

Proof. A smooth embedding between manifolds M and N is defined as a smooth immersion $F: M \to N$ that is a homeomorphism on its image $F(M) \subseteq N$ in the subspace topology. Let $F: M \to N$ and $G: N \to P$ be smooth embeddings.

We know already that the composition of smooth maps is smooth. Then let $v \in T_{G \circ F(p)}P$ for $p \in M$. Since G is an immersion, there exists a unique $q \in T_{F(p)}N$ such that $dG_{F(p)}(q) = v$. Similarly, since F is an immersion, there exists a unique $u \in T_pM$ such that $dF_p(u) = q$. Thus $d(G \circ F)_p(u) = dG_{F(p)} \circ dF_p = v$ for a unique $u \in T_pM$ which shows that $G \circ F$ is a smooth immersion.

Now, consider $G \circ F : M \to P$. It is a continuous mapping because the composition of continuous maps is continuous. It is bijective, because the composition of bijections is a bijection. And its inverse, $F^{-1} \circ G^{-1}$ is continuous, because it is a composition of continuous inverses. Thus, it is a homeomorphism onto its image and therefore a smooth embedding.

Exercise 4.24

Give an example of a smooth embedding that is neither an open map nor a closed map.

Proof. Define $f: (0,1) \to \mathbb{R}^2$ by f(x) = (x,0). (0,1) considered as a subset of (0,1) is both open and closed, but f((0,1)) is neither open nor closed as a subset of \mathbb{R}^2 . However, it is open and closed as a subset of its image, $(0,1) \times \{0\}$, so it is a smooth embedding.

2 Problems

Problem 4.2

Proof. Let $p \in M$ such that dF_p is nonsingular. We can choose charts (U, φ) for $p \in M$ and (V, ψ) for $F(p) \in N$. Define $\hat{U} = \varphi(U) \subseteq \mathbb{R}^n$, $\hat{V} = \psi(V) \subseteq \mathbb{H}^n$, and $\hat{F} = \psi \circ F \circ \varphi^{-1}$. \hat{U} and \hat{V} are open when considered as subsets of \mathbb{R}^n

and \mathbb{H}^n , respectively. However, to apply the Inverse Function Theorem in \mathbb{R}^n , we need that \hat{V} be considered as an open subset of \mathbb{R}^n . We can canonically identify $T_{\hat{F}(x)}\hat{V}$ with $T_{\hat{F}(x)}\mathbb{H}^n$ where $p = \varphi^{-1}(x)$. However, we must apply the inclusion function $\iota : \mathbb{H}^n \hookrightarrow \mathbb{R}^n$ to consider \hat{V} as a subset of \mathbb{R}^n . By Lemma 3.11, $d\iota_{\hat{F}(x)} : T_{\hat{F}(x)}\mathbb{H}^n \to T_{\hat{F}x}\mathbb{R}^n$ is an isomorphism, so $d\iota_{\hat{F}(x)}$ is also nonsingular. Thus, since $d\iota_{\hat{F}(x)} \circ d\hat{F}_x$ is nonsingular, we can apply the IFT to $\iota \circ \hat{F}$ to show that it is a diffeomorphism from \hat{U} to some neighborhood of $\iota(\hat{F}(x))$, now both considered as subsets of \mathbb{R}^n . However, since $\hat{F}(x) \in \partial \mathbb{H}^n$, there does not exist an open neighborhood V' of $\hat{F}(x)$ such that $\iota(V')$ is a neighborhood of $\iota(\hat{F}(x)) \subseteq \mathbb{R}^n$, which is a contradiction. Therefore, we must have that $p \in \text{Int}(N)$.